U
    hY"                     @   s   d Z ddlmZmZmZ ddlZddgZdddZddd	Z	dd
dZ
dddZdddZee
eee	e	dZdddZdd ZdS )z[
The thresholding helper module implements the most popular signal thresholding
functions.
    )divisionprint_functionabsolute_importN	thresholdthreshold_firmc              	   C   sz   t | } t | }t jdd* d||  }|jdd |d | | }W 5 Q R X |dkr\|S t ||}t |||S d S )Nignoredivide   r   minmaxoutnpasarrayabsoluteerrstatecliplesswheredatavalue
substitute	magnitudethresholdedcond r   6/tmp/pip-unpacked-wheel-mu97bu1x/pywt/_thresholding.pysoft   s    

r    c              	   C   s   t | } t | }t jdd2 d|d |d   }|jdd|d | | }W 5 Q R X |dkrd|S t ||}t |||S dS )zNon-negative Garrote.r   r   r
      r   Nr   r   r   r   r   r   
nn_garrote"   s    

r"   c                 C   s*   t | } t t | |}t ||| S )N)r   r   r   r   r   )r   r   r   r   r   r   r   hard4   s    
r#   c                 C   s2   t | } t | rtdt t | ||| S )Nz,greater thresholding only supports real data)r   r   iscomplexobj
ValueErrorr   r   r   r   r   r   r   r   greater:   s    

r'   c                 C   s2   t | } t | rtdt t | ||| S )Nz)less thresholding only supports real data)r   r   r$   r%   r   r'   r&   r   r   r   r   A   s    

r   )r    r#   r'   r   ZgarroteZgarottec              	   C   sV   zt | | ||W S  tk
rP   dd tt  D }tdd|Y nX dS )a  
    Thresholds the input data depending on the mode argument.

    In ``soft`` thresholding [1]_, data values with absolute value less than
    `param` are replaced with `substitute`. Data values with absolute value
    greater or equal to the thresholding value are shrunk toward zero
    by `value`.  In other words, the new value is
    ``data/np.abs(data) * np.maximum(np.abs(data) - value, 0)``.

    In ``hard`` thresholding, the data values where their absolute value is
    less than the value param are replaced with `substitute`. Data values with
    absolute value greater or equal to the thresholding value stay untouched.

    ``garrote`` corresponds to the Non-negative garrote threshold [2]_, [3]_.
    It is intermediate between ``hard`` and ``soft`` thresholding.  It behaves
    like soft thresholding for small data values and approaches hard
    thresholding for large data values.

    In ``greater`` thresholding, the data is replaced with `substitute` where
    data is below the thresholding value. Greater data values pass untouched.

    In ``less`` thresholding, the data is replaced with `substitute` where data
    is above the thresholding value. Lesser data values pass untouched.

    Both ``hard`` and ``soft`` thresholding also support complex-valued data.

    Parameters
    ----------
    data : array_like
        Numeric data.
    value : scalar
        Thresholding value.
    mode : {'soft', 'hard', 'garrote', 'greater', 'less'}
        Decides the type of thresholding to be applied on input data. Default
        is 'soft'.
    substitute : float, optional
        Substitute value (default: 0).

    Returns
    -------
    output : array
        Thresholded array.

    See Also
    --------
    threshold_firm

    References
    ----------
    .. [1] D.L. Donoho and I.M. Johnstone. Ideal Spatial Adaptation via
        Wavelet Shrinkage. Biometrika. Vol. 81, No. 3, pp.425-455, 1994.
        DOI:10.1093/biomet/81.3.425
    .. [2] L. Breiman. Better Subset Regression Using the Nonnegative Garrote.
        Technometrics, Vol. 37, pp. 373-384, 1995.
        DOI:10.2307/1269730
    .. [3] H-Y. Gao.  Wavelet Shrinkage Denoising Using the Non-Negative
        Garrote.  Journal of Computational and Graphical Statistics Vol. 7,
        No. 4, pp.469-488. 1998.
        DOI:10.1080/10618600.1998.10474789

    Examples
    --------
    >>> import numpy as np
    >>> import pywt
    >>> data = np.linspace(1, 4, 7)
    >>> data
    array([ 1. ,  1.5,  2. ,  2.5,  3. ,  3.5,  4. ])
    >>> pywt.threshold(data, 2, 'soft')
    array([ 0. ,  0. ,  0. ,  0.5,  1. ,  1.5,  2. ])
    >>> pywt.threshold(data, 2, 'hard')
    array([ 0. ,  0. ,  2. ,  2.5,  3. ,  3.5,  4. ])
    >>> pywt.threshold(data, 2, 'garrote')
    array([ 0.        ,  0.        ,  0.        ,  0.9       ,  1.66666667,
            2.35714286,  3.        ])
    >>> pywt.threshold(data, 2, 'greater')
    array([ 0. ,  0. ,  2. ,  2.5,  3. ,  3.5,  4. ])
    >>> pywt.threshold(data, 2, 'less')
    array([ 1. ,  1.5,  2. ,  0. ,  0. ,  0. ,  0. ])

    c                 s   s   | ]}d  |V  qdS )z'{0}'N)format).0keyr   r   r   	<genexpr>   s     zthreshold.<locals>.<genexpr>z/The mode parameter only takes values from: {0}.z, N)thresholding_optionsKeyErrorsortedkeysr%   r(   join)r   r   moder   r/   r   r   r   r   R   s    R
c              	   C   s   |dk rt d||k r t dt| } t| }tjdd: || }|d||   | }|jdd|d | | }W 5 Q R X t||k}t|d r| | ||< |S )	a_  Firm threshold.

    The approach is intermediate between soft and hard thresholding [1]_. It
    behaves the same as soft-thresholding for values below `value_low` and
    the same as hard-thresholding for values above `thresh_high`.  For
    intermediate values, the thresholded value is in between that corresponding
    to soft or hard thresholding.

    Parameters
    ----------
    data : array-like
        The data to threshold.  This can be either real or complex-valued.
    value_low : float
        Any values smaller then `value_low` will be set to zero.
    value_high : float
        Any values larger than `value_high` will not be modified.

    Notes
    -----
    This thresholding technique is also known as semi-soft thresholding [2]_.

    For each value, `x`, in `data`. This function computes::

        if np.abs(x) <= value_low:
            return 0
        elif np.abs(x) > value_high:
            return x
        elif value_low < np.abs(x) and np.abs(x) <= value_high:
            return x * value_high * (1 - value_low/x)/(value_high - value_low)

    ``firm`` is a continuous function (like soft thresholding), but is
    unbiased for large values (like hard thresholding).

    If ``value_high == value_low`` this function becomes hard-thresholding.
    If ``value_high`` is infinity, this function becomes soft-thresholding.

    Returns
    -------
    val_new : array-like
        The values after firm thresholding at the specified thresholds.

    See Also
    --------
    threshold

    References
    ----------
    .. [1] H.-Y. Gao and A.G. Bruce. Waveshrink with firm shrinkage.
        Statistica Sinica, Vol. 7, pp. 855-874, 1997.
    .. [2] A. Bruce and H-Y. Gao. WaveShrink: Shrinkage Functions and
        Thresholds. Proc. SPIE 2569, Wavelet Applications in Signal and
        Image Processing III, 1995.
        DOI:10.1117/12.217582
    r   zvalue_low must be non-negative.z6value_high must be greater than or equal to value_low.r   r   r
   Nr   )r%   r   r   r   r   r   r   any)r   Z	value_lowZ
value_highr   Zvdiffr   Z
large_valsr   r   r   r      s"    8

)r   )r   )r   )r   )r   )r    r   )__doc__
__future__r   r   r   Znumpyr   __all__r    r"   r#   r'   r   r,   r   r   r   r   r   r   <module>   s"   






\