"""Forest covertype dataset.

A classic dataset for classification benchmarks, featuring categorical and
real-valued features.

The dataset page is available from UCI Machine Learning Repository

    https://archive.ics.uci.edu/ml/datasets/Covertype

Courtesy of Jock A. Blackard and Colorado State University.
"""

# Author: Lars Buitinck
#         Peter Prettenhofer <peter.prettenhofer@gmail.com>
# License: BSD 3 clause

import logging
import os
from gzip import GzipFile
from os.path import exists, join
from tempfile import TemporaryDirectory

import joblib
import numpy as np

from ..utils import Bunch, check_random_state
from ..utils._param_validation import validate_params
from . import get_data_home
from ._base import (
    RemoteFileMetadata,
    _convert_data_dataframe,
    _fetch_remote,
    _pkl_filepath,
    load_descr,
)

# The original data can be found in:
# https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz
ARCHIVE = RemoteFileMetadata(
    filename="covtype.data.gz",
    url="https://ndownloader.figshare.com/files/5976039",
    checksum="614360d0257557dd1792834a85a1cdebfadc3c4f30b011d56afee7ffb5b15771",
)

logger = logging.getLogger(__name__)

# Column names reference:
# https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.info
FEATURE_NAMES = [
    "Elevation",
    "Aspect",
    "Slope",
    "Horizontal_Distance_To_Hydrology",
    "Vertical_Distance_To_Hydrology",
    "Horizontal_Distance_To_Roadways",
    "Hillshade_9am",
    "Hillshade_Noon",
    "Hillshade_3pm",
    "Horizontal_Distance_To_Fire_Points",
]
FEATURE_NAMES += [f"Wilderness_Area_{i}" for i in range(4)]
FEATURE_NAMES += [f"Soil_Type_{i}" for i in range(40)]
TARGET_NAMES = ["Cover_Type"]


@validate_params(
    {
        "data_home": [str, os.PathLike, None],
        "download_if_missing": ["boolean"],
        "random_state": ["random_state"],
        "shuffle": ["boolean"],
        "return_X_y": ["boolean"],
        "as_frame": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def fetch_covtype(
    *,
    data_home=None,
    download_if_missing=True,
    random_state=None,
    shuffle=False,
    return_X_y=False,
    as_frame=False,
):
    """Load the covertype dataset (classification).

    Download it if necessary.

    =================   ============
    Classes                        7
    Samples total             581012
    Dimensionality                54
    Features                     int
    =================   ============

    Read more in the :ref:`User Guide <covtype_dataset>`.

    Parameters
    ----------
    data_home : str or path-like, default=None
        Specify another download and cache folder for the datasets. By default
        all scikit-learn data is stored in '~/scikit_learn_data' subfolders.

    download_if_missing : bool, default=True
        If False, raise an OSError if the data is not locally available
        instead of trying to download the data from the source site.

    random_state : int, RandomState instance or None, default=None
        Determines random number generation for dataset shuffling. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    shuffle : bool, default=False
        Whether to shuffle dataset.

    return_X_y : bool, default=False
        If True, returns ``(data.data, data.target)`` instead of a Bunch
        object.

        .. versionadded:: 0.20

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric). The target is a pandas DataFrame or
        Series depending on the number of target columns. If `return_X_y` is
        True, then (`data`, `target`) will be pandas DataFrames or Series as
        described below.

        .. versionadded:: 0.24

    Returns
    -------
    dataset : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : ndarray of shape (581012, 54)
            Each row corresponds to the 54 features in the dataset.
        target : ndarray of shape (581012,)
            Each value corresponds to one of
            the 7 forest covertypes with values
            ranging between 1 to 7.
        frame : dataframe of shape (581012, 55)
            Only present when `as_frame=True`. Contains `data` and `target`.
        DESCR : str
            Description of the forest covertype dataset.
        feature_names : list
            The names of the dataset columns.
        target_names: list
            The names of the target columns.

    (data, target) : tuple if ``return_X_y`` is True
        A tuple of two ndarray. The first containing a 2D array of
        shape (n_samples, n_features) with each row representing one
        sample and each column representing the features. The second
        ndarray of shape (n_samples,) containing the target samples.

        .. versionadded:: 0.20
    """
    data_home = get_data_home(data_home=data_home)
    covtype_dir = join(data_home, "covertype")
    samples_path = _pkl_filepath(covtype_dir, "samples")
    targets_path = _pkl_filepath(covtype_dir, "targets")
    available = exists(samples_path) and exists(targets_path)

    if download_if_missing and not available:
        os.makedirs(covtype_dir, exist_ok=True)

        # Creating temp_dir as a direct subdirectory of the target directory
        # guarantees that both reside on the same filesystem, so that we can use
        # os.rename to atomically move the data files to their target location.
        with TemporaryDirectory(dir=covtype_dir) as temp_dir:
            logger.info(f"Downloading {ARCHIVE.url}")
            archive_path = _fetch_remote(ARCHIVE, dirname=temp_dir)
            Xy = np.genfromtxt(GzipFile(filename=archive_path), delimiter=",")

            X = Xy[:, :-1]
            y = Xy[:, -1].astype(np.int32, copy=False)

            samples_tmp_path = _pkl_filepath(temp_dir, "samples")
            joblib.dump(X, samples_tmp_path, compress=9)
            os.rename(samples_tmp_path, samples_path)

            targets_tmp_path = _pkl_filepath(temp_dir, "targets")
            joblib.dump(y, targets_tmp_path, compress=9)
            os.rename(targets_tmp_path, targets_path)

    elif not available and not download_if_missing:
        raise OSError("Data not found and `download_if_missing` is False")
    try:
        X, y
    except NameError:
        X = joblib.load(samples_path)
        y = joblib.load(targets_path)

    if shuffle:
        ind = np.arange(X.shape[0])
        rng = check_random_state(random_state)
        rng.shuffle(ind)
        X = X[ind]
        y = y[ind]

    fdescr = load_descr("covtype.rst")

    frame = None
    if as_frame:
        frame, X, y = _convert_data_dataframe(
            caller_name="fetch_covtype",
            data=X,
            target=y,
            feature_names=FEATURE_NAMES,
            target_names=TARGET_NAMES,
        )
    if return_X_y:
        return X, y

    return Bunch(
        data=X,
        target=y,
        frame=frame,
        target_names=TARGET_NAMES,
        feature_names=FEATURE_NAMES,
        DESCR=fdescr,
    )
