U
    }hD                     @   s<   d dl mZ ddlmZ ddlmZmZ G dd deZdS )	    )Counter   )"_BinaryClassifierCurveDisplayMixin   )average_precision_scoreprecision_recall_curvec                
   @   sv   e Zd ZdZdddddddZddddddd	Zedddd
dddddddZeddddddddddZdS )PrecisionRecallDisplayaG  Precision Recall visualization.

    It is recommend to use
    :func:`~sklearn.metrics.PrecisionRecallDisplay.from_estimator` or
    :func:`~sklearn.metrics.PrecisionRecallDisplay.from_predictions` to create
    a :class:`~sklearn.metrics.PrecisionRecallDisplay`. All parameters are
    stored as attributes.

    Read more in the :ref:`User Guide <visualizations>`.

    Parameters
    ----------
    precision : ndarray
        Precision values.

    recall : ndarray
        Recall values.

    average_precision : float, default=None
        Average precision. If None, the average precision is not shown.

    estimator_name : str, default=None
        Name of estimator. If None, then the estimator name is not shown.

    pos_label : int, float, bool or str, default=None
        The class considered as the positive class. If None, the class will not
        be shown in the legend.

        .. versionadded:: 0.24

    prevalence_pos_label : float, default=None
        The prevalence of the positive label. It is used for plotting the
        chance level line. If None, the chance level line will not be plotted
        even if `plot_chance_level` is set to True when plotting.

        .. versionadded:: 1.3

    Attributes
    ----------
    line_ : matplotlib Artist
        Precision recall curve.

    chance_level_ : matplotlib Artist or None
        The chance level line. It is `None` if the chance level is not plotted.

        .. versionadded:: 1.3

    ax_ : matplotlib Axes
        Axes with precision recall curve.

    figure_ : matplotlib Figure
        Figure containing the curve.

    See Also
    --------
    precision_recall_curve : Compute precision-recall pairs for different
        probability thresholds.
    PrecisionRecallDisplay.from_estimator : Plot Precision Recall Curve given
        a binary classifier.
    PrecisionRecallDisplay.from_predictions : Plot Precision Recall Curve
        using predictions from a binary classifier.

    Notes
    -----
    The average precision (cf. :func:`~sklearn.metrics.average_precision_score`) in
    scikit-learn is computed without any interpolation. To be consistent with
    this metric, the precision-recall curve is plotted without any
    interpolation as well (step-wise style).

    You can change this style by passing the keyword argument
    `drawstyle="default"` in :meth:`plot`, :meth:`from_estimator`, or
    :meth:`from_predictions`. However, the curve will not be strictly
    consistent with the reported average precision.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.metrics import (precision_recall_curve,
    ...                              PrecisionRecallDisplay)
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn.svm import SVC
    >>> X, y = make_classification(random_state=0)
    >>> X_train, X_test, y_train, y_test = train_test_split(X, y,
    ...                                                     random_state=0)
    >>> clf = SVC(random_state=0)
    >>> clf.fit(X_train, y_train)
    SVC(random_state=0)
    >>> predictions = clf.predict(X_test)
    >>> precision, recall, _ = precision_recall_curve(y_test, predictions)
    >>> disp = PrecisionRecallDisplay(precision=precision, recall=recall)
    >>> disp.plot()
    <...>
    >>> plt.show()
    N)average_precisionestimator_name	pos_labelprevalence_pos_labelc                C   s(   || _ || _|| _|| _|| _|| _d S )N)r
   	precisionrecallr	   r   r   )selfr   r   r	   r
   r   r    r   P/tmp/pip-unpacked-wheel-ig1s1lm8/sklearn/metrics/_plot/precision_recall_curve.py__init__h   s    
zPrecisionRecallDisplay.__init__F)nameplot_chance_levelchance_level_kwc                K   sh  | j ||d\| _| _}ddi}| jdk	rL|dk	rL| d| jdd|d< n.| jdk	rjd	| jd|d< n|dk	rz||d< |jf | | jj| j| jf|\| _| j	dk	rd
| j	 dnd}d| }d| }	| jj
||	d |r@| jdkrtdd| jddddd}
|dk	r |
| | jjd| j| jff|
\| _nd| _d|ksV|rd| jjdd | S )a  Plot visualization.

        Extra keyword arguments will be passed to matplotlib's `plot`.

        Parameters
        ----------
        ax : Matplotlib Axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        name : str, default=None
            Name of precision recall curve for labeling. If `None`, use
            `estimator_name` if not `None`, otherwise no labeling is shown.

        plot_chance_level : bool, default=False
            Whether to plot the chance level. The chance level is the prevalence
            of the positive label computed from the data passed during
            :meth:`from_estimator` or :meth:`from_predictions` call.

            .. versionadded:: 1.3

        chance_level_kw : dict, default=None
            Keyword arguments to be passed to matplotlib's `plot` for rendering
            the chance level line.

            .. versionadded:: 1.3

        **kwargs : dict
            Keyword arguments to be passed to matplotlib's `plot`.

        Returns
        -------
        display : :class:`~sklearn.metrics.PrecisionRecallDisplay`
            Object that stores computed values.

        Notes
        -----
        The average precision (cf. :func:`~sklearn.metrics.average_precision_score`)
        in scikit-learn is computed without any interpolation. To be consistent
        with this metric, the precision-recall curve is plotted without any
        interpolation as well (step-wise style).

        You can change this style by passing the keyword argument
        `drawstyle="default"`. However, the curve will not be strictly
        consistent with the reported average precision.
        )axr   Z	drawstylez
steps-postNz (AP = z0.2f)labelzAP = z (Positive label:  ZRecallZ	Precision)xlabelylabela  You must provide prevalence_pos_label when constructing the PrecisionRecallDisplay object in order to plot the chance level line. Alternatively, you may use PrecisionRecallDisplay.from_estimator or PrecisionRecallDisplay.from_predictions to automatically set prevalence_pos_labelzChance level (AP = kz--)r   colorZ	linestyle)r      z
lower left)loc)Z_validate_plot_paramsZax_Zfigure_r	   updateplotr   r   Zline_r   setr   
ValueErrorZchance_level_Zlegend)r   r   r   r   r   kwargsZline_kwargsZinfo_pos_labelr   r   Zchance_level_line_kwr   r   r   r!   y   sH    7






zPrecisionRecallDisplay.plotauto)sample_weightr   drop_intermediateresponse_methodr   r   r   r   c             
   K   s@   | j ||||||d\}}}| j||f|||||	|
|d|S )a  Plot precision-recall curve given an estimator and some data.

        Parameters
        ----------
        estimator : estimator instance
            Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
            in which the last estimator is a classifier.

        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Input values.

        y : array-like of shape (n_samples,)
            Target values.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        pos_label : int, float, bool or str, default=None
            The class considered as the positive class when computing the
            precision and recall metrics. By default, `estimators.classes_[1]`
            is considered as the positive class.

        drop_intermediate : bool, default=False
            Whether to drop some suboptimal thresholds which would not appear
            on a plotted precision-recall curve. This is useful in order to
            create lighter precision-recall curves.

            .. versionadded:: 1.3

        response_method : {'predict_proba', 'decision_function', 'auto'},             default='auto'
            Specifies whether to use :term:`predict_proba` or
            :term:`decision_function` as the target response. If set to 'auto',
            :term:`predict_proba` is tried first and if it does not exist
            :term:`decision_function` is tried next.

        name : str, default=None
            Name for labeling curve. If `None`, no name is used.

        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is created.

        plot_chance_level : bool, default=False
            Whether to plot the chance level. The chance level is the prevalence
            of the positive label computed from the data passed during
            :meth:`from_estimator` or :meth:`from_predictions` call.

            .. versionadded:: 1.3

        chance_level_kw : dict, default=None
            Keyword arguments to be passed to matplotlib's `plot` for rendering
            the chance level line.

            .. versionadded:: 1.3

        **kwargs : dict
            Keyword arguments to be passed to matplotlib's `plot`.

        Returns
        -------
        display : :class:`~sklearn.metrics.PrecisionRecallDisplay`

        See Also
        --------
        PrecisionRecallDisplay.from_predictions : Plot precision-recall curve
            using estimated probabilities or output of decision function.

        Notes
        -----
        The average precision (cf. :func:`~sklearn.metrics.average_precision_score`)
        in scikit-learn is computed without any interpolation. To be consistent
        with this metric, the precision-recall curve is plotted without any
        interpolation as well (step-wise style).

        You can change this style by passing the keyword argument
        `drawstyle="default"`. However, the curve will not be strictly
        consistent with the reported average precision.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import make_classification
        >>> from sklearn.metrics import PrecisionRecallDisplay
        >>> from sklearn.model_selection import train_test_split
        >>> from sklearn.linear_model import LogisticRegression
        >>> X, y = make_classification(random_state=0)
        >>> X_train, X_test, y_train, y_test = train_test_split(
        ...         X, y, random_state=0)
        >>> clf = LogisticRegression()
        >>> clf.fit(X_train, y_train)
        LogisticRegression()
        >>> PrecisionRecallDisplay.from_estimator(
        ...    clf, X_test, y_test)
        <...>
        >>> plt.show()
        )r(   r   r   )r&   r   r   r'   r   r   r   )Z!_validate_and_get_response_valuesfrom_predictions)clsZ	estimatorXyr&   r   r'   r(   r   r   r   r   r$   y_predr   r   r   from_estimator   s,    q	
z%PrecisionRecallDisplay.from_estimator)r&   r   r'   r   r   r   r   c                K   s   | j |||||d\}}t|||||d\}}}t||||d}t|}|| t|  }t||||||d}|jf ||||	d|
S )a  Plot precision-recall curve given binary class predictions.

        Parameters
        ----------
        y_true : array-like of shape (n_samples,)
            True binary labels.

        y_pred : array-like of shape (n_samples,)
            Estimated probabilities or output of decision function.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        pos_label : int, float, bool or str, default=None
            The class considered as the positive class when computing the
            precision and recall metrics.

        drop_intermediate : bool, default=False
            Whether to drop some suboptimal thresholds which would not appear
            on a plotted precision-recall curve. This is useful in order to
            create lighter precision-recall curves.

            .. versionadded:: 1.3

        name : str, default=None
            Name for labeling curve. If `None`, name will be set to
            `"Classifier"`.

        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is created.

        plot_chance_level : bool, default=False
            Whether to plot the chance level. The chance level is the prevalence
            of the positive label computed from the data passed during
            :meth:`from_estimator` or :meth:`from_predictions` call.

            .. versionadded:: 1.3

        chance_level_kw : dict, default=None
            Keyword arguments to be passed to matplotlib's `plot` for rendering
            the chance level line.

            .. versionadded:: 1.3

        **kwargs : dict
            Keyword arguments to be passed to matplotlib's `plot`.

        Returns
        -------
        display : :class:`~sklearn.metrics.PrecisionRecallDisplay`

        See Also
        --------
        PrecisionRecallDisplay.from_estimator : Plot precision-recall curve
            using an estimator.

        Notes
        -----
        The average precision (cf. :func:`~sklearn.metrics.average_precision_score`)
        in scikit-learn is computed without any interpolation. To be consistent
        with this metric, the precision-recall curve is plotted without any
        interpolation as well (step-wise style).

        You can change this style by passing the keyword argument
        `drawstyle="default"`. However, the curve will not be strictly
        consistent with the reported average precision.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import make_classification
        >>> from sklearn.metrics import PrecisionRecallDisplay
        >>> from sklearn.model_selection import train_test_split
        >>> from sklearn.linear_model import LogisticRegression
        >>> X, y = make_classification(random_state=0)
        >>> X_train, X_test, y_train, y_test = train_test_split(
        ...         X, y, random_state=0)
        >>> clf = LogisticRegression()
        >>> clf.fit(X_train, y_train)
        LogisticRegression()
        >>> y_pred = clf.predict_proba(X_test)[:, 1]
        >>> PrecisionRecallDisplay.from_predictions(
        ...    y_test, y_pred)
        <...>
        >>> plt.show()
        )r&   r   r   )r   r&   r'   )r   r&   )r   r   r	   r
   r   r   )r   r   r   r   )Z!_validate_from_predictions_paramsr   r   r   sumvaluesr   r!   )r*   Zy_truer-   r&   r   r'   r   r   r   r   r$   r   r   _r	   Zclass_countr   Zvizr   r   r   r)   l  sL    e    
   	z'PrecisionRecallDisplay.from_predictions)N)	__name__
__module____qualname____doc__r   r!   classmethodr.   r)   r   r   r   r   r      s@   e l r   N)collectionsr   Zutils._plottingr   Z_rankingr   r   r   r   r   r   r   <module>   s   