from __future__ import annotations

import sys
from functools import wraps
from typing import Any, Callable, Literal, Union

if sys.version_info >= (3, 10):
    from typing import Concatenate, ParamSpec
else:
    from typing_extensions import Concatenate, ParamSpec

import cv2
import numpy as np

NUM_RGB_CHANNELS = 3
MONO_CHANNEL_DIMENSIONS = 2
NUM_MULTI_CHANNEL_DIMENSIONS = 3
FOUR = 4
TWO = 2

MAX_OPENCV_WORKING_CHANNELS = 4

NormalizationType = Literal["image", "image_per_channel", "min_max", "min_max_per_channel"]

P = ParamSpec("P")

MAX_VALUES_BY_DTYPE = {
    np.dtype("uint8"): 255,
    np.dtype("uint16"): 65535,
    np.dtype("uint32"): 4294967295,
    np.dtype("float16"): 1.0,
    np.dtype("float32"): 1.0,
    np.dtype("float64"): 1.0,
    np.uint8: 255,
    np.uint16: 65535,
    np.uint32: 4294967295,
    np.float16: 1.0,
    np.float32: 1.0,
    np.float64: 1.0,
    np.int32: 2147483647,
}

NPDTYPE_TO_OPENCV_DTYPE = {
    np.uint8: cv2.CV_8U,
    np.uint16: cv2.CV_16U,
    np.float32: cv2.CV_32F,
    np.float64: cv2.CV_64F,
    np.int32: cv2.CV_32S,
    np.dtype("uint8"): cv2.CV_8U,
    np.dtype("uint16"): cv2.CV_16U,
    np.dtype("float32"): cv2.CV_32F,
    np.dtype("float64"): cv2.CV_64F,
    np.dtype("int32"): cv2.CV_32S,
}


def maybe_process_in_chunks(
    process_fn: Callable[Concatenate[np.ndarray, P], np.ndarray], **kwargs: Any
) -> Callable[[np.ndarray], np.ndarray]:
    """Wrap OpenCV function to enable processing images with more than 4 channels.

    Limitations:
        This wrapper requires image to be the first argument and rest must be sent via named arguments.

    Args:
        process_fn: Transform function (e.g cv2.resize).
        kwargs: Additional parameters.

    Returns:
        np.ndarray: Transformed image.

    """

    @wraps(process_fn)
    def __process_fn(img: np.ndarray) -> np.ndarray:
        num_channels = get_num_channels(img)
        if num_channels > MAX_OPENCV_WORKING_CHANNELS:
            chunks = []
            for index in range(0, num_channels, 4):
                if num_channels - index == TWO:
                    # Many OpenCV functions cannot work with 2-channel images
                    for i in range(2):
                        chunk = img[:, :, index + i : index + i + 1]
                        chunk = process_fn(chunk, **kwargs)
                        chunk = np.expand_dims(chunk, -1)
                        chunks.append(chunk)
                else:
                    chunk = img[:, :, index : index + 4]
                    chunk = process_fn(chunk, **kwargs)
                    chunks.append(chunk)
            return np.dstack(chunks)

        return process_fn(img, **kwargs)

    return __process_fn


def clip(img: np.ndarray, dtype: Any) -> np.ndarray:
    max_value = MAX_VALUES_BY_DTYPE[dtype]
    return np.clip(img, 0, max_value).astype(dtype)


def clipped(func: Callable[Concatenate[np.ndarray, P], np.ndarray]) -> Callable[Concatenate[np.ndarray, P], np.ndarray]:
    @wraps(func)
    def wrapped_function(img: np.ndarray, *args: P.args, **kwargs: P.kwargs) -> np.ndarray:
        dtype = img.dtype
        return clip(func(img, *args, **kwargs), dtype)

    return wrapped_function


def get_num_channels(image: np.ndarray) -> int:
    return image.shape[2] if image.ndim == NUM_MULTI_CHANNEL_DIMENSIONS else 1


def is_grayscale_image(image: np.ndarray) -> bool:
    return get_num_channels(image) == 1


def get_opencv_dtype_from_numpy(value: np.ndarray | int | np.dtype | object) -> int:
    if isinstance(value, np.ndarray):
        value = value.dtype
    return NPDTYPE_TO_OPENCV_DTYPE[value]


def is_rgb_image(image: np.ndarray) -> bool:
    return get_num_channels(image) == NUM_RGB_CHANNELS


def is_multispectral_image(image: np.ndarray) -> bool:
    num_channels = get_num_channels(image)
    return num_channels not in {1, 3}


def convert_value(value: np.ndarray | float, num_channels: int) -> float | np.ndarray:
    """Convert a multiplier to a float / int or a numpy array.

    If num_channels is 1 or the length of the multiplier less than num_channels, the multiplier is converted to a float.
    If length of the multiplier is greater than num_channels, multiplier is truncated to num_channels.
    """
    if isinstance(value, (np.float32, np.float64)):
        return value.item()
    if isinstance(value, np.ndarray) and value.ndim == 0:
        return value.item()
    if isinstance(value, (float, int)):
        return value
    if (
        # Case 1: num_channels is 1 and multiplier is a list or tuple
        (num_channels == 1 and isinstance(value, np.ndarray) and value.ndim == 1)
        or
        # Case 2: multiplier length is 1, regardless of num_channels
        (isinstance(value, np.ndarray) and len(value) == 1)
        # Case 3: num_channels more then length of multiplier
        or (num_channels > 1 and len(value) < num_channels)
    ):
        # Convert to a float
        return float(value[0])

    if value.ndim == 1 and value.shape[0] > num_channels:
        value = value[:num_channels]
    return value


ValueType = Union[np.ndarray, float, int]


def get_max_value(dtype: np.dtype) -> float:
    if dtype not in MAX_VALUES_BY_DTYPE:
        msg = (
            f"Can't infer the maximum value for dtype {dtype}. "
            "You need to specify the maximum value manually by passing the max_value argument."
        )
        raise RuntimeError(msg)
    return MAX_VALUES_BY_DTYPE[dtype]
